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Phonon emission of two-dimensional plasmons 
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Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Moscow, USSR 

Received 20 November 1987, in final form 28 July 1988 

Abstract. In this paper, we consider the acoustic phonon radiation by the plasma waves of 
quasi-two-dimensional inversion electron layers. The electron-phonon interaction is taken 
into account using the phenomenological deformation potential in the jellium model. 

1. Introduction 

A two-dimensional plasmon is a well known excitation of quasi-two-dimensional elec- 
trons on a He surface, in an inversion-channel Si metal-oxide-semiconductor field- 
effect transistor (MOSFET) or in GaAs-A1,Gal -,As heterostructures (for a general 
review see Ando et a1 (1982)). The aim of this work is to investigate the phonon channel 
of the decay of the two-dimensional plasmon at frequencies below the optical frequencies 
ofthecrystallattice. Inspiteofthefactthat,forplasmondamping, theimpurityscattering 
dominates, the plasmon-damping process may be important in such technical problems 
as the transformation of an electromagnetic field into a sound in the far-infrared (FIR) 
region. 

2. Model 

To investigate the qualitative properties of the effect, we restrict ourselves to the simplest 
possible model with only one filled surface subzone. Figure 1 shows a heterostructure of 
the type described in the work by Allen et a1 (1977) and Batke eta1 (1985). Electrons on 
a thin GaAs layer move in an almost free manner in the interface plane (x, y )  while in 
the z direction they are localised by the potential barrier of a broader band Al,Ga, -,As. 
In the flat-band model of Chen et a1 (1976), the electron wavefunction is given by the 
expression 

q (2) = (2 /d)  '1' sin(nz/d) O < z < d .  (1) 

To generalise further considerations, we assume a complete set of wavefunctions q,, 
describing both excited states of the GaAs layer shown in figure 1 and other layers in the 
case of a superlattice. 

The frequency dependence of the conductivity is described well by the Drude formula 

( 2 )  o = ( n e * t / m ) / ( l  - i o t )  
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' GaAs AL,Ga,-,As 

Figure 1. Transformation of the electromagnetic field into sound (schematically; not to 
scale). The microwave field Ew receives a momentum h/b  from the AI grating and excites 
the plasmon which emits a phonon. 

where e is the electron charge, n the number of electrons per unit area, m the effective 
electron mass (mGaAs = 0.07), w the frequency and z the relaxation time. For typical 
electron densities n of 10"-1013 cm-2, W T  = 1 at w = 10-100 GHz (Koch 1976). 

We shall take into account the electron interaction (except for the Coulomb inter- 
action) with a crystalline lattice in the jellium model using the phenomenological deform- 
ation potential. In full analogy with superconductivity physics (for an introduction to 
this topic, see, e.g. ,  Lifshitz and Pitaevskii (1982)) for the electron-electron interaction 
we have 

Uw,k = ( 4 n e 2 / & ) / k 2  - gk2 / [k2  - (w/u)'  - io] ( 3 )  
where E is the dielectric constant (almost the same for GaAs and Al,Ga,-.As), hk the 
transferred three-dimensional momentum, U the velocity of sound and g the coupling 
constant. 

The coupling constant g is expressed in terms of the deformation potential Ed and 
the crystal lattice density p :  

g = =;/pu2. 

In the coordinate representation z = (x, y ,  z )  and in the static limit w = 0, we obtain 

U(T)  = (e2/E)/lzI - g S ( r ) .  
In the Bardeen-Cooper-Schrieffer theory, g parametrises the contact attraction 
between electrons caused by the virtual phonon exchange. 

In a standard dielectric formalism, plasmon dispersion wpl(q) is a solution of the 
dispersion equation 

det(l - VII)  = 0 ( 4 )  
where Vm,q are matrix elements of the interaction of quasi-two-dimensional electrons 
and I I m ,  is apolarisation operator; the response of the two-dimensional electron density 
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to small potential fluctuations is 

where q = ( q x ,  qy) is a two-dimensional wave-vector p = ( x ,  y ) .  
Wave damping arises both from the absorption part of the polarisation operator 

and from the imaginary addition of interaction matrix elements Vw,q describing sound 
emission and escape of this phonon energy to the specimen bulk. Phonon damping will 
be obtained by separating out the term proportional to E: from Im opl. 

Subsequently, in the following sections, we shall consider matrix elements of the 
interaction and the polarisation operator and, by analysing the plasmon dispersion, we 
shall obtain the intensity of phonon irradiation. 

3. Matrix elements of interaction 

The quantity u , , ~  defined by equation (3) is a three-dimensional propagator; to calculate 
the matrix elements Vnm.ij of quasi-two-dimensional electrons, it is necessary to change 
to the coordinate representation in z direction. First, we shall calculate the matrix 
elements W ( z )  of the interaction for two pure two-dimensional electrons (figure 2) 
moving in two parallel planes: 

Figure 2. Calculation of the matrix elements Vof interaction. The first problem is to calculate 
the scattering amplitude W for purely two-dimensional electrons moving in the planes z and 
z 2 .  Then integration is to be made over localised qj functions in the z direction. 
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where z is the distance between the planes. Then, with the help of the wavefunctions 
q n ( z ) ,  we obtain the matrix elements participating in the dispersion relation (4): 

This formula, which we give for illustration purposes, shows that the matrix elements 
involve four-electron states. For our oversimplified model, only the diagonal term i = 
j = m = n = 0 with q o ( z )  from equation (1) is relevant; of course, the corresponding 
matrix in equation (4) is 1 x 1. 

Elementary integration gives 

W(z> (2xe2/&) exp(-qlzl)/q - g [ W )  + d ex~(-Qlzl)/Ql 
where Q = (q2 - qi  - i0)ll2, qo = w / u ,  qX = k, and qy = ky .  

continuation when the phase velocity w / q  is larger than the velocity U of sound: 
A small imaginary addition io in the phonon propagator (3) determines the analytical 

2 - 2 112 Q- -iQ & = ( 4 0  4 )  . 
For w > qu the interaction W ( z ) ,  i.e. the amplitude of electron-electron scattering, 

receives an imaginary addition. The transition from the static phonon attraction to the 
emission of longitudinal acoustic phonons (see figure l), 

exp(-Q/zl) -+ exp(iQ/zI) 
is analogous to the transition from a static Coulomb field to the Cerenkov irradiation of 
a superlight source in electrodynamics. Finally, for the matrix elements, we obtain (see 
figure 2) 

Vnm,ii = (2ne2/’&q)Xnm,q ( 4 )  - g[Knm,i ,  + i(qi/Q)xnm,i, (-iQ>I 

Knm,q  = / qn(Z>qm(Z)ql(z)q,(Z) d z  ( 5 )  

Xnm,i, = 1 qn(Z*)qm(Z2) exp(-q/z2 - Z l i >  qi(zl>q,(zl> dZ1 dz2. 

Matrix elements of the Coulomb interaction (the first term in equation ( 5 ) )  have many 
times been considered in the theory of different types of polariton in semiconductor 
superlattices (see, e.g., Das Sarmaand Quinn (1982), and references therein). To avoid 
long expressions in the following analysis, let us make some simplifying assumptions. 
For all microstructures the grating period b (see figure 1) significantly exceeds the 
inversion layer thickness. For the Coulomb form factor ~ ( q ) ,  it is possible to use the 
long-wavelength limit xoo,oo(q) = 1, qd << 1. For two-dimensional plasmons, Mach’s 
number Ma = w/qu 9 1 and Q = qo = w / u .  

At low frequencies qod < 1; in this case and for the phonon form factor, we have 
x(-iqo) = 1. The latter equation is not always fulfilled. When the phonon wavelength 
APh = 2nu/w = d is comparable with the layer thickness, the destructive interference in 
the depth of the layer reduces the amplitude of phonon emission. 

Under the above assumptions, to evaluate the order of magnitude of the phonon 
emission intensity, in the dispersion equation (4), we shall use 
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Let us now consider the response of the electron inversion layer to electric fields 
parallel to the interface. 

4. Drude formula for the polarisation operator 

For the two-dimensional electron density response 

W P ,  4 = n w , q  exP[i(qP - 4 1  

O ( P >  4 = v0J.q exp MqP - 4 1  

n,,q = n0J,q(ev0J3q). 

j w , q  = (T.wEw.q 

E0J.q = -iqvu,q 

qj0J.q = 4enfJJ,q) 

n = (nq2/mw2)/(1 + i /oz).  

for small oscillations of the electrostatic potential given by 

according to the definition (6), we have 

If in Ohm's law with (T from equation (2) 

we express the electric field in terms of the gradient of the potential, i.e. 

and use the charge conservation 

we obtain another representation of the Drude formula: 

( 7 )  
This is a long-wave fast asymptotic of the polarisation operator. For its application, 

it is necessary that the wavelength should be much larger than the inter-particle distance: 
2n/q 9 n-'i2. Also, it is necessary that the phase velocity w/q is much larger than the 
typical electronvelocity, e.g. theFermivelocity uF = hn'l2/m at low temperatures kBT 
mu$/2. This form together with interaction (6) will be used in the dispersion equation 
(4) * 

5. Dispersion relation 

Arbitrary oscillations of the electron density may be generated but, when as an inter- 
mediate state there are resonance excited plasmons, the intensity of the process may 
significantly increase. Under the wave propagation conditions w z  S 1, and solving the 
dispersion equation D = 1 - Vn = 0 with Il from equation ( 7 )  and Vfrom equation (6) 
in the zero-order approximation with respect to the small parameters g and z-l, we 
obtain the well known expression for plasmon dispersion: 

w$(q) = (2nne2/&m)q. 

The wavelength is fixed by the grating period Ap, = 2n/q = b. 
Ohmic dissipation and phonon irradiation create small imaginary additions to the 

plasmon frequency w = wpl - iy/2. The imaginary part of the frequency is plasmon 
damping. 
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The first term, which is proportional to (always more important for y ) ,  
represents Ohmic dissipation. The second term, which is proportional to g, describes 
phonon emission. For the partial probability of the phonon decay, i.e. the ratio of the 
second to the first term, we obtain 

Pph 21 2(wpl t)(g/[(4~e2/E)/(qwpl/4)1}X. 

Comparison with superconductivity physics where the phonon term in interaction (3) is 
larger than the Coulomb term shows that the term { . . . } - 1 if q and wpl/u are comparable 
with the reciprocal lattice constant. For the electron inversion layer, of course q ,  
wpl/u 1 kl, which gives a rough estimate of the probability 

pph l/AplAph. 

where Apl and Aph are in ingstroms. For a given probability of the phonon decay, 
the intensity of phonon irradiation may be evaluated from the intensity of generated 
plasmons. A more precise estimate for P p h  may be obtained by taking, for example, 

Ed = 16eV 

d = 260 A 
b = l , u m  

These parameters have been chosen using the work of Olego et a1 (1982) and Landolt- 
Bijrnstein (1982). Under these conditions 

p = 5.3 g cm-3 

U = 5.0 km s-l 

t = mp/e  = 2 x IO-'* s 

E = 12.5 

n = 7 x IO1' cm-* 

,U = 5 m2 V-l s-'. 

P p h  r_r wpl = 6meV Ma = 290 

wt = 17 qod = 45 h p h  = 35 A 
x = l(qod)' for qod 9 1. 

6. Discussion 

The performed analysis is in agreement with the results of Krasheninnikov, Sultanov 
and Chaplik (KSC) (1979) who conclude that the phonon intensity, although several 
orders lower than that for piezocoupling, is within the possibility of contemporary 
experimental technique. The new phonon emission spectroscopy technique of a two- 
dimensional electron gas developed in the work of Rothenfusser et aZ(1986) is available. 
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It is important to mention that, owing to the grating, even black radiation generates 
resonant plasma waves with a fixed frequency and a parallel beam of monochromatic 
phonons. This may turn out to be important for some applications. 

The increase in the electron mobility increases the probability of phonon decay 
P z. A more interesting possibility for increase in the phonon intensity is provided in 
the case of superlattices, when N two-dimensional electron layers emit in phase (this will 
be the subject of a separate paper). 

Finally it should be noted that the approach used is also suitable for estimating optical 
phonon generation when account is taken of the frequency dependence of the dielectric 
susceptibility 

E ( @ )  = [(CO* - uto - iy’)/(w’ - w+o - i y ’ ) ] ~ ~ .  

For comparison see the paper by Das Sarma and Mason (1985). 

7. Addendum 

Finally we would like to draw attention to some qualitative properties in which our paper 
differs from that of KSC. 

(i) In the paper by KSC the conclusion is drawn that emitted acoustic waves are almost 
shear. In our opinion, this is an inadequate peculiarity of the approximation used in their 
paper. Formally, plasmon attenuation caused by bulk phonon emission goes to zero 
when the transverse velocity of sound goes to zero. Thus, to emphasise this distinction, 
we used the jellium model in which only longitudinal compressing waves are taken into 
account. 

(ii) In the paper by KSC, only the low-frequency case is considered, i.e. when the 
phonon wavelength is larger than the thickness of the electron layer. In our paper the 
corresponding form factor is introduced and the result is for the whole acoustic spectrum 
of phonon frequencies. 

(iii) In the paper by KSC the boundary condition more appropriate for the free 
surface of a MOS structure is used whereas, in our work, conditions suitable for the two- 
dimensional electron gas buried in the bulk of one heterojunction are used. 

The author is indebted to Professor Chaplik for clarifying this discussion. 
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